REACH!!

From June 1 to November 30, 2008, manufacturers have the opportunity to register under REACH, the EU program of Registration, Evaluation, and Authorization of Chemicals. Failure to do so may result in having a product banned from the EU. So says Joe Acker, president of the Synthetic Organic Chemicals Manufacturers Association (SOCMA), according to the latest issue of ICIS Chemical Business (June 2-8, 2008, pp 14-15).

Non-EU chemical manufacturers have been slow to realize the effect of REACH regulations.  According to the ICIS article, Acker explains that 8,000 to 10,000 chemicals now sold into the EU may be pulled back. The reason is that many low profit specialty products will be discontinued owing to the expense of registration and manpower needed to manage compliance. 

EU manufacturers are facing the grim prospect of yet more regulatory compliance expense added to their portfolio of products.  This kind of expense only reduces competitiveness for EU manufacturers.

Suppliers who elect to discontinue supply of specialty products will leave users of these materials in need of a new supply or face the shutdown of the end use.

To add to the pain, REACH authorizes the European Chemicals Agency (ECHA) to charge for registration, updates, appeals, and most maddeningly, charge an extra fee for confidential disclosures.

My lament here is not that I am hoping for a chinese night market of chemical sales to the EU. My lament is that REACH seems likely to accelerate the chemical deindustrialization of the EU. The uptick in petrochemical raw material costs unfortunately coincides with the startup of REACH and the paper storm that it will cause. It is very bad timing.

Let’s get some new archetypes and paradigms. Please?

I viewed the new version of The Andromeda Strain recently. The miniseries is directed by brothers Ridley and Tony Scott and was broadcast on A&E. I really like and respect Michael Crichton for the book and the original movie was quite good. And, Ridley Scott is one of my favorite directors.

But this remake is a problem. The production value is excellent and the cinematography is quite inspired in a few places. I couldn’t do better than Ridley Scott, so who am I to complain? But there is the rub. While it is technically competent and visually stimulating, the storyline is a bit … well, I’ll just say it … overwrought. The updated storyline is just too bloody complex. Too many little cul-de-sacs and backstories to keep track of. It has that same manic, runaway train feel as ER. Just like Crichton’s most recent books. I can’t finish them.

Part of the problem with much of contemporary movie making is the persistance of formulaic and over used themes. Tired, threadbare archetypes of reluctant heroes, corrupt politicians, and busty nubiles who are handy with martial arts and firearms. I enjoy watching Angelina Jolie spraying machine gun fire as much as the next guy, but enough! Lets move on to something new.

Which brings me to the latest Indiana Jones movie. This movie proves that even George Lucas is subject to the Peter Principle. The storyline is a patchwork of whatever few baby-boomer oriented euphamisms that haven’t already been hijacked by the trolls at Industrial Light and Magic. It’s a contrived piece of cinema that was apparently designed by MBA’s and industrial psychologists to extract money from your debit card. (But I did enjoy some Milk Duds during the show.)

For Gawd sakes, George, go out back and dig up some of that money you have buried in the back yard and buy a better script next time.

“60 Minutes” and Dust Explosions

Sunday evening on 60 Minutes on CBS there was a segment on dust explosions. For the most part, it was an expose on the failings of OSHA. It is hard to avoid the conclusion that OSHA is lead by a bunch of dullards who are under the enchantment of an administration reluctant to impose new regulations on industry.

The thrust of the program was that OSHA is completely unable to recognize incipient dust hazards on their site inspections, partly due to a lack of training and partly due to a slack-jawed lack of direction.  It wasn’t pretty.

As a dramatic backdrop, numerous instances of major plant explosions were trotted out for all to see. The message is that plants keep blowing up from dust explosions, but OSHA isn’t holding companies to higher standards- because there aren’t any.  The Secretary cited OSHA’s housekeeping requirement as broad enough to cover the dust explosion scenario. It was less than convincing.

I couldn’t help but notice that the subtext was that there can only be safety if more regulations were written. I didn’t see any company officials grilled in the same manner that the Secretary was grilled.

In fairness to OSHA, someone needed to clarify just what that agency is free to do in regard to rule making and what must be done by the Congress.  I know there are smart people in OSHA, but being federal employees, there is little incentive to champion new regulations. Between institutional inertia, lobbyists, and an antagonistic executive branch, who wants to charge ahead of the parade on new rules?

 

Friday’s assorted scribblings

Crimony. There was a new coat of snow on the mountains yesterday down to the 9 or 10 thousand foot level.

I’m living the Chinese curse “May you live in interesting times”.  The good thing about my job is that I get to wear a lot of hats. The bad thing is that I get to wear a lot of hats.

Reunite Gondwana! 

 

Chemists and Engineers

What would happen to innovation in chemical technology if we had a more intimate comingling of chemistry and the engineering sciences?  What effect would there be on the stream of chemists graduating into the world if more schools had a chemical engineer on the chemistry faculty? Could a single engineer on the faculty actually make a difference in altering the direction of the boat a few degrees?

Why is such a change desirable? One way to change the trend of deindustrialization and economic repositioning of manufacturing out of North America is to stimulate innovation in the industrial sciences. To do this we can rely on business leaders individually to formulate strategic plans to upgrade plants and processes by way of step changes in technology. But for business leaders, the calculation for such a change must also take into account the alternative of moving production to another country. Many times it is easier and faster to move production to China rather than taking a gamble on the invention of better technology. A large amount of pharmaceutical manufacturing has been shifted to China, Mexico, and India for this very reason.

To rely on business leaders (top down) to ramp up innovation really means that one is relying on the market. While letting the marketplace drive the economics and distribution of manufacturing has a certain appeal to purists, the global marketplace is highly distorted by government and taxation. Letting “pure” market forces govern innovation as the sole driver is to bet all of your money on a horse that limps.  Why not find ways to stimulate innovation with an improved stream of chemical innovators and a renewed urgency?

Universities do this all of the time. But it is my sense that other disciplines perhaps do this better. It is all too easy for we chemists to invent a reaction or composition, publish it, and then move on to the next outcropping of opportunity. We do this thinking that surely somebody will pick up the ball and run it to the end zone of commerce.

But for any given paper published in SynLett or JOC or ______, the likelihood of commercialization is low. It is not automatically the role of academic science to drive its work towards commercialization. That has been the role of engineering. 

What has been lacking is more significant early overlap of the two disciplines. For a chemist to truly be a part of bringing a transformation to the manufacturing scale, the chemist has to begin thinking about how to prepare the chemistry for the big pots and pans. This is what the art of scale-up is about. And in scale-up, the practice of chemistry has to overlap with the practice of engineering.

Industry already provides for itself in this way by training chemists to do scale-up work. This kind of work has always been beyond the scope of academic training.  But what if there were a course of study wherein chemistry faculty and students could more thoroughly address the problems of chemical manufacture? What if engineering concepts would be allowed to creep into the training of chemists?

Chemistry faculty would begin writing grants for process oriented research. Schools without engineering departments might start hiring the odd engineer or two in an effort to “modernize” the chemistry department.  Gradually, a department might become known among recruiters and donors for producing a strain of BS, MS, and PhD chemists who are already adapted to process research.

It is important to stress that the goal is not to plop conventional engineering curriculum into the chemical course of study.  That will not work. But what is possible is to build a minor in industrial chemistry applications. This pill will be easier to swallow for the P-chemists because in short order it would be apparent that chemical engineering is heavily loaded with physical chemistry.

I have tried to make a case that one way to make a positive influence in chemical innovation in North America is to begin a grass-roots effort to stimulate the culture of chemistry. I believe that providing an avenue of study that includes early exposure to engineering and process economics will stimulate many more students and faculty to make significant contributions to entrepreneurism and industry.

The Chemistry Curriculum

It is time to have a frank talk about the fundamental merits of the college chemistry curriculum. This plan of study has remained substantially unchanged for decades (see comment by bchem). Certainly minor changes occur through nudges and bumps here and there pertaining to details. But in the last generation has there been a dialog or debate on the fundamental assumptions of the common curriculum? And I refer specifically to the ACS certified curriculum, which has been the gold standard across the country. Major changes that I have been witness to mainly accomodate an increased emphasis on biochemistry or new computerized instrumentation. 

The undergraduate chemistry curriculum is a very logical and thorough survey of the three pillars of chemistry- Theory, synthesis, and analysis. This covers the fields of inorganic, organic, physical, analytical, and biochemistry. Along the way we teach a few other areas of specialty by way of electives.

The current program of chemical pedagogy is certainly true to itself. There is genuine concern and care to avoid dilution of the content and over-inflation of grades, generally. The core domains of the subject are sorted out and given special consideration. Much work has been done to spark interest in the field and textbooks seem to be written quite well as a rule.  Resources like J. Chem. Ed. are a continuous stream of clever tools and tricks to make the subject more plain.

Our colleges and universities have been quite good at churning out chemical scholarship. And students are given scholarly exposure in their learning program. Not surprisingly, scholars are very good at producing more scholars.

But has the academy been keeping up with the role of chemistry in the world?  Just look around. How many CEO’s and upper executives in the top 100 chemical companies are chemists? I have not seen this statistic tabulated. But I am confident that relatively few chemists populate those ranks. Those that do often arise through marketing or finance channels.

But why should they? The field of chemistry attracts people interested in science, not business. Chemical educators have a responsibility to educate chemical scientists with a minimum proficiency in the field.  That requires a minimum number of semester hours of coursework within a 4 year period. There is only so much a department can do and so much a student can absorb.

Yet, the purpose of a college education is to prepare a student for a productive life. A learning program that is internally consistent but blind to the needs of the external world is a fantasy. Have we come to value programmatic tidiness more than practicality?

Chemistry is a highly practical field. It involves problem solving and production. Chemists make stuff. Chemists solve problems. Chemists are specialists in the transformation of matter. But chemists do not operate in a vacuum. They do their work for organizations, and there is the rub.

By training, chemists are woefully prepared to function outside the laboratory. And as a direct result, chemists are poorly prepared to leave the lab and function elsewhere in the organization.  Traditionally, education in the organizational arts has been considered on-the-job training. In a sense this is not unreasonable. How can educators anticipate the needs of a student 5 years into the future? 

What is under appreciated by educators and students alike are the many opportunities that will follow for a chemist in industry. Many if not most chemists will come to a fork in the road in their careers. Will they stay in the lab or will they go to the business side? Usually, the path to greater opportunity in a business organization is the business side. Technical sales, customer service, marketing, procurement, management, etc.

I am not proposing that chemistry faculty teach coursework that cover such material. I am trying to suggest, however, that chemistry departments take a closer look at what an industrial career really looks like and try to anticipate a few needs that will arise as a result of this career path. Advisors can talk to students about the possibility of a business minor. An accounting or marketing class could be very helpful for a student who is uncertain about his/her career path. These are painless actions that can be of great use to a graduate.

But there is more than the passive approach of suggesting alternatives to undergrads. There is a more active approach that would definitely serve the needs of students and society alike.

Elective coursework covering intellectual property and patents, business law, the regulatory world (TSCA, EPA, OSHA, CERCLA, REACH, etc.), industrial hygiene, and perhaps most importantly an introduction to chemical engineering. This last item I cannot overemphasize.  Chemical engineering includes the basics of unit operations, process economics, thermodynamics, and controls. I would offer that the whole package could be called Industrial Chemistry. 

There are junior college programs for chemical operators that do provide exposure to some engineering concepts. But this isn’t necessarily for management track graduates.

I would offer that the department with an industrial chemistry program would be very successful in job placement as well as attracting new majors.  Comments?

 

Struggle

Something happens to some people when they transition to adulthood. They gradually quit becoming and focus on being. To be is to plant a stake in the ground and pronounce what you stand for. To become is to keep looking for better ground. To become is to invite disruption. To be is to find a comfortable spot.

To be is to live in the moment. To become is to delay gratification.

As one grows older, the interest in becoming naturally fades as opportunities to be are exhausted. The trick to staying vital and interesting is to keep finding ways to become. That is the struggle.

B.S., Ph.D., A.D.D.

For those newbies just coming out of school into the fabulous world of Big Time Chemistry, you have an interesting time ahead of you. You’ll soon learn that your crisp new diploma is really just a backstage pass down the rabbit hole of The World, Inc.  Your brain is now as sharp as it’ll ever be … well, after some well deserved R&R. Your capacity to spend long hours in the lab will never be greater.  And, your skin has thickened to the abuses from too many years in college. The cleat marks of rabid and unscrupulous profs posturing for tenure will scab over and vanish. Now is your chance to plant your cleats anywhere you please.

For those going into industrial slots, there is yet much to learn. Whereas in school your cohort is confined to a narrow age group, in the world you’ll land in a place filled with workers of all ages. The biggest surprise of all may be the slow realization that perhaps you’re not the only person of Ability in the room. Not all of the really bright people stay in academia or even went to college.

You’ll be able to examine people in various stages of career growth and in various capacities. There is a vast difference in corporate cultures and in time one adapts to the demands of the Machine. This Machine requires much of its people. All company Machines are constructed around a core. This core is the accounting system.  Many people are dedicated to the upkeep of this part of the Machine.  Scientists fresh out of school are often unaware of the critical importance of non-scientist staff pulling the handles and twiddling the knobs of the Machine so it can keep operating.

I happen to think that chemical plants are really fascinating places whose sophstication and importance is frequently misunderstood. Yes, they are often maligned as unattractive blights on the landscape. But from the technology pespective, chemical manufacturing is a rich part of our technological heritage and more of us need to make that point to our communities. 

There are many paths in a good and righteous career in chemistry. Some choose to stay in R&D. Others choose the dark side and enter business development or the even darker side of supply chain management (just kidding, mostly). Many will discover fascinating specialties they never new existed like scale-up, kilo-lab, pilot plant operations, or production support. Then there is quality control, analytical services, technical support, or environmental health and safety.

There are many industry segments that use chemists, so try not to get fixated on just one. It is quite possible to have a good life outside of pharmaceuticals. For students who are interested in grad school, there is polymer chemistry or a variety of material sciences. Polymer science and rheology is fascinating and there is a huge industry out there making polymers. But no matter what you pick, make certain it is something that you really dig. Then it is less of a job and more of a passion.

Chemistry on Mars

As I live and breath. The space community has gotten serious again about chemical analysis of Martian soil. NASA is very much driven by physicists and engineers, so it is nice to see chemistry get some flight time.  Why don’t more chemists elbow these physicists out of the way to put packages on rockets? I guess we are insufferable ground pounders.

The Phoenix Lander which, to NASA‘s great credit, has successfully landed in the North polar region of Mars, is equipped with an array of analytical instruments and wet chemical apparatus for on-the-spot analysis of soil samples. Among the devices on board is a Swiss-made Atomic Force Microscope. This device will provide direct microscopic imaging of Martian soil samples. In true Swiss fastidiousness, it has multiple cantilevers for redundancy. I’m sure it keeps good time as well. 

The Canadian Space Agency has contributed a meterological station on the lander.

The lander was constructed by contractor Lockheed Martin.

Given that the lander contains hazardous chemcials for the analyses, somebody is going to have to dispose of the hazardous waste after 90 days. I hope it is properly placarded.  \;-)